
BrightScan
Achieving cost-efficient and
effective software testing

Table of contents
Introduction 1

Cost-efficient software testing.. 2

	 1. What is a reasonable cost for software testing?... 2

	 	 1.1 The cost of poor quality... 3

		 1.2 Relative cost of defects.. 5

		 1.3 Shift-left...5

	 2. Most common mistakes...8

	 	 2.1 Underestimating the importance of testing and inadequate planning..8

		 2.2 Lack of skilled testers...8

		 2.3 Neglecting or overestimating automation (with AI)..........................10

		 2.4 Ignoring non-functional testing..10

		 2.5 Poor communication...11

	 3. How to get started with cost-efficient testing...12

BrightScan..13

	 1. Efficient process... 13

		 1.1 100% or partially remote.. 14

		 1.2 100% tailored ..15

	 2. Result driven..15

		 2.1 3-step maturity model...15

		 2.2 Improvement areas...16

		 2.3 Implementing assessment results...17

	 3. Top 3 advantages...18

		 3.1 Powerful side effect..18

		 3.2 Broader than software testing..18

		 3.3 Success guaranteed..19

More information ..20

In this whitepaper, we share key insights gathered over the years while crafting
a methodology to empower software delivery organizations to realize their full
potential. These insights were predominantly acquired during assessments, also
known as BrightScans, conducted for numerous enterprises struggling with
the repercussions of the digital revolution and the organizational shift towards
methodologies like Agile and DevOps.

A recurring theme among these organizations was their shared objective of wanting
to enhance software testing to make it more efficient, mitigate the costs associated
with poor quality, whilst maintaining effectiveness.

In response to this challenge, we have developed several effective solutions over
the years. In this whitepaper we will primarily focus on the foundational steps toward
achieving first-time-right software development. With a particular emphasis on
sharing insights gathered from our BrightScan methodology.

Introduction

1.

The prevailing misconception among decision-makers across all industries regarding
software testing is the belief that it is an avoidable expense. They look at testing as
an expendable cost, always seeking ways to minimize it.
But the opposite is true, software testing can generate substantial financial
advantages, both directly and indirectly. And luckily many decision-makers within
organizations share this perspective.

The main reason some organizations continue to perceive testing as a cost centre
is their inability to manage it efficiently and effectively. Like many worthwhile
endeavours, achieving cost-efficient and effective software testing requires a
solid foundation and a clear organization-wide strategy. This necessitates an
initial investment to bring software testing costs to a bare minimum whilst staying
effective, resulting in significant benefits and cost savings across the organization.

All of this raises crucial questions:

 When should an organization make this investment?

 How to implement it?

 Where to begin and stop?

1. What is a reasonable cost for software testing?
Let’s start with the basics. When talking about software testing costs, it’s crucial to
establish what constitutes reasonable expenditure. This determination depends on a
multitude of factors, including:

 Business complexity

 Technological landscape and requirements

 Software significance (business-critical or not)

 Industry type (e.g., healthcare)

 Personnel (experienced or not)

 IT and team organiaztion (roles, availability, ratio, …)

 Maturity level of the current environment

 And various others

Cost-efficient software testing

2.

The above-mentioned factors contribute to the challenge of pinpointing a single fig-
ure to represent the cost of software testing. Investigations typically reveal that, on
average, software testing costs fall within the range of 15 to 25% of the total project
cost. However, in certain instances software testing expenses can rise much higher,
constituting up to 50% of the total project cost.

Why is it so challenging to establish a reasonable cost for software testing?
Based on our experience, a good method for determining the reasonableness of
software testing costs involves comparing these expenses to the costs resulting from
production incidents. Or how we call it, the cost of poor quality. To do this, we must
define the average cost of incidents in production, as thorough software testing
plays a pivotal role in averting late-stage issues in the development life cycle. And
consider all indirect costs beyond the rework by development, which is an essential
factor in the cost of poor quality, but often forgotten.

Ultimately, software testing should consistently bring financial benefits during the
development of software.

1.1 The cost of poor quality

Defining the cost of poor quality can be very complex. On the other hand,
defining the cost of fixing various types of production incidents is a task that every
organization should undertake, tailored to its own unique situation. The direct cost of
such incidents is influenced by several factors outlined below.

Effort spent on:

 Root cause analysis

 Development to fix incidents

 Deployment of the fix incidents in various environments

 Regression and re-testing

 Adjustment of existing test sets (manual and/or automated)

 Adaptation of user manuals and other documentation

 Modification of analysis or user stories

 First-line support for affected users or customers

 Mitigation actions in production

 General communication
3.

Software testing should always bring financial
benefits when developing software.

Additionally, it’s essential to consider the cost of project delays resulting from
diverted time away from other tasks.

Creating first-time right software
has never been more crucial.

The above does not consider potential revenue loss due to production incidents.
Think of scenarios where errors lead to inaccurate price calculations or customers
abandoning malfunctioning products. Moreover, software failures can severely
tarnish a company’s reputation, resulting in direct hits to stock prices and diminished
customer loyalty.

Indirect cost associated with production incidents are challenging to quantify. These
may include:

 Late deliveries and delays (even of next projects)

 Focus loss from current work

 Future loss in product sales

 Decreased credibility

 Negative reviews or publicity

 Internal frustration leading to people leaving

In today’s landscape, ensuring first-time-right software, is more crucial than ever.
Consider, for instance, the launch of a mobile application. If it fails to function
properly upon release, it risks being abandoned by users indefinitely.

4.

1.2 Relative cost of defects

Over the past decades, the field of software testing has seen significant innovations.
A numerous insights have been collected, and various studies have been conducted
to better understand the dynamics of software development and testing. These
studies have delved into a wide range of topics, including the relative cost of defects
in software products.

This wealth of information is now widely accessible through various channels, from
academic literature and industry reports to online articles and blogs. They provide
valuable insights to guide organizations in their software testing strategies.

As you can see in the graph above, the relative cost of defects refers to the fact
that the cost of fixing a defect increases exponentially as a product moves through
the stages of development. Fixing defects in the post-production stage can be
significantly more expensive than during the design, coding or testing stages.

1.3 Shift-left

Given these insights, it’s common sense to focus on the early stages of software
development to prevent as many defects as possible. So, one should find a higher
number of defects before the testing stage than during it. This mindset shift may be
challenging for some teams or organizations, but it does not require magic.

However, it’s not simple either. If creating flawless software was easy, there would be
no necessity for any form of verification or validation. Secondly, shifting left is not just
a procedural or technical change, but a cultural one. It requires a mindset shift across
the organization, not just within development and testing teams.

In a nutshell, the shift-left approach suggests that ‘testing’ should not be delayed
until the final days leading up to a release. Instead, it should be shifted left on the
project timeline, emphasizing the importance of frequent and early testing.

5.

This doesn’t imply that testing towards the end of the development cycle is
forbidden. These testing stages should still be executed as planned. However, since
most issues would have been prevented or detected earlier, they should be less
significant and quicker to resolve.

The shift-left approach integrates testing and quality checks throughout the entire
development life cycle. It ensures that all resources and roles involved in the project
contribute to and take responsibility for the overall quality of the system or project.

Some practical examples to implement the shift-left approach:

 Testers participate in design sessions to inquire about customer usage,
 potentially leading to design modifications

 Testers pair up with developers to test new features on their machines, or the
 development environment, before they are developed

 Testers engage closely with developers to pose questions, generate test ideas,
 and devise ‘what if’ scenarios

 Developers execute extensive unit (integration) testing and code reviews

 Analysts write clear acceptance criteria and assist in testing them early on

 And so on

These are just a handful of examples. Depending on your organization’s specifics,
you can take many more steps to facilitate early testing and quality checks.

6.

This mindset shift may be challenging for some teams
or organizations, but it does not require magic.

7.

The shift-left approach primarily mitigates these risks:

 Less resources and planning issues, as testers play a more active role in
 planning and estimation.

 Less effort and resources waist, given that issues in requirements and design
 are identified and resolved at an early stage. Debugging and related tasks
 such as identification, localization, rectification, and regression testing become
 increasingly complex as more code is written and integrated with other
 systems.

 Less technical debt since defects aren’t pushed to the next increment or
 version. There is more time to address bugs discovered early in the
 development lifecycle.

The main advantages of shift-left testing:

 Improved quality:
 Since testing is conducted throughout the development process, there are
 more opportunities to catch and fix issues. This results in increased coverage
 and a higher quality product.

 Cost savings:
 Detecting and addressing issues early in the development process is more
 cost-effective than trying to fix them after the product has been released.

 Increased efficiency:
 Testing is integrated into every stage of development, which leads to more
 efficient workflows and shorter development cycles, saving time and resources
 It also enables a faster time-to-market with a high quality product. Additionally,
 efficiency and effectiveness can be increased by a wide range of tools and
 technologies supporting a shift-left approach, e.g. automated testing tools and
 CI/CD pipelines.

 Better collaboration:
 Shift-left fosters a culture of quality and better collaboration between
 developers, testers, business analysts, and other stakeholders from the early
 stages on, leads to better communication and understanding within the team,
 and shorter feedback loops. This allows for rapid changes based on real-time

8.

 insights, and ultimately a better product, which is more aligned with user
 expectations.

 Reduced risks:
 By catching and fixing defects early, it reduces the risk of project overruns,
 missed deadlines, and poor-quality products. Also, teams learn from their
 mistakes and prevent them from recurring in future development cycles,
 fostering continuous improvement.

Implementing shift-left requires a certain level of skill and expertise among team
members. It’s essential to invest in training and skill development to ensure that
everyone is on board and capable of contributing to the shift-left approach.

2. Most common mistakes
Our extensive experience in software quality over the years has given us a lot of
insights into how organizations handle software testing. We’ve gathered valuable
lessons from successful initiatives, but perhaps we’ve learned more from initiatives
that didn’t quite hit the mark.

We’ve compiled the most frequent missteps organizations make when attempting to
optimize the cost of software testing.

2.1 Underestimating the importance of testing and inadequate planning

As said before, some organizations tend to view testing as an afterthought or a
necessary evil. Rather than an integral part of the software development process.
This leads to insufficient budget allocation, inadequate testing, and potentially costly
defects in the production environment.

Often linked to this underestimation of testing, is the lack of a proper testing strategy
and plan, resulting in disorganized and inefficient testing. Leading to wasted time
and resources, and increasing the cost of testing.

2.2 Lack of skilled testers

Often, organizations try to cut costs by hiring less experienced testers. While this
may save money in the short term, it can lead to poor quality testing and higher costs
in the long run.

For example, numerous organizations have opted to outsource (all) software testing
tasks to offshore or nearshore partners. Lured by the immediate cost reduction of up
to 50%. However, they often overlook the potential cost of poor quality, which can
significantly exceed the initial software testing costs.

9.

Sure, certain well-defined, repetitive tasks can be efficiently outsourced. But, as
said before, cost-efficiency is rarely achieved by testing towards the end of the
development cycle. If an organization doesn’t consistently maintain an effective
defect prevention strategy, the long-term costs will probably be substantial. It’s
crucial for organizations to retain control over testing activities and governance. So,
they should invest in a clear test strategy and high-level expertise onsite to utilize
offshore or nearshore resources effectively.

Another example is letting developers or analysts do the testing. Some organizations
choose not to hire specialized testers, assuming developers or other team members
can handle everything that involves testing. This is a misconception, it’s essential to
have dedicated testers on your team for the following reasons:

 Perspective:
 Testers have a different mindset. They view the system as a whole and consider
 various end-to-end and application specific user scenarios. Developers, being
 close to their own code, may be more focused on individual features or
 components.

 Expertise:
 Testers have specialized skills in creating test cases, identifying edge cases, and
 using testing tools and methodologies that developers may not have.

 Efficiency:
 By allowing developers to focus on writing code to create applications and
 testers to focus on identifying defects, both can work more efficiently within
 their areas of expertise.

 Unbiased testing:
 Developers may unconsciously avoid testing areas of the application, for
 whatever reason. Independent testers do not have this bias.

 User experience:
 Testers often act as the first line of users, providing feedback on usability and
 user experience that developers may overlook.

 Reporting:
 Testers are skilled in documenting defects, providing clear reproduction steps,
 and prioritizing issues based on severity and impact, which is crucial
 information for effective debugging and fixing.

 Risk mitigation:
 Testers are trained to think about and test for potential risks,
 helping to prevent future issues and improve the overall quality of the product.

This is why organizations should maintain this segregation of duties for optimal
results.

2.3 Neglecting or overestimating automation (with AI)

Automation can significantly reduce the time and cost of testing, but it requires an
upfront investment. Some organizations shy away from this investment, resulting in
higher long-term costs due to manual testing.

On the other hand attempting to automate everything, trying to eliminate manual
testing, is a flawed approach. While it may work initially, the evolving nature of
software products impacts the maintenance of automated test sets. The focus
should be on automating business-critical paths, repetitive tasks, and tasks that are
time-consuming when done manually.

Effective automation requires significant effort, the right strategy, and appropriate
tools. Initial investment can be high before reaping the benefits. Yet, it’s worthwhile
if done correctly.

Many organizations are paying substantial licensing costs for test automation
tools without understanding their coverage or return on investment. We’ve seen
organizations automate everything without linking automated test scripts to system
requirements. This leads to significant time wastage when errors occur. In some
cases, test scripts were excluded or modified to pass, resulting in major production
issues and a loss of trust in automated test scripts. Or even situations where
automation was a bottleneck for a high-performing DevOps process due to the
sheer volume of automated test scripts.

Over-automation can lead to a false sense of security. Aspects like user experience
tests or parts of an end-to-end process, which are not automatable, can be
overlooked.

2.4 Ignoring non-functional testing

Organizations often overlook non-functional testing, but it’s just as critical as
functional testing. Non-functional aspects like performance, security, and usability
directly impact the user experience and the overall quality of the software. Ignoring

10.

these aspects can lead to serious issues that, if found in a live environment, can be
highly expensive and damaging to fix and recover from.

Planning for these non-functional tests from the beginning is crucial. It should be
part of the initial test strategy and design phase, not an afterthought. This way,
any issues can be detected and fixed early in the development cycle, which is
significantly less costly and less risky than fixing them after the software has been
released.

2.5 Poor communication

Often, we encounter environments where testers, developers, and other (business)
stakeholders aren’t communicating effectively. Misunderstandings lead to incorrect
development, testing, missed defects, and rework, all of which can inflate the cost of
development and testing.

Including testers from the beginning of the project is crucial. They can provide
valuable insights during the requirement gathering and design phases, helping
to prevent ambiguities and misunderstandings that can lead to defects later on.
Early involvement of testers also allows for the creation of a robust testing strategy,
aligning it with the development process and business requirements.

Business stakeholders also play a vital role. They need to be fully invested in
their projects and take ownership. They should clearly communicate their needs,
expectations, and any changes in requirements. This helps ensure the development
and testing teams have a clear understanding of what needs to be achieved. Regular
meetings, constant communication, and transparency among all parties can facilitate
this process.

Remember, software development and testing are team efforts. Everyone involved,
from developers and testers to business stakeholders, plays a crucial role in the
project’s success. By fostering a culture of open communication and collaboration,
you can greatly improve the quality of your software and the efficiency of your
development and testing processes.

11.

3. How to get started with cost-efficient testing?
The situations mentioned above are far from ideal, and unfortunately, they are reali-
ties in many organizations. In such organizations, software testing is often viewed as
an avoidable expense.

12.

Move well before moving fast.

The rationale behind this is straightforward: to maximize cost-efficiency in software
testing, your organization needs a customised, solid foundation and a coherent,
organization-wide testing strategy. The best way to establish this, is by examining
the processes, methods, people, and tools involved in the software development
lifecycle. It boils down to a simple yet potent mantra: move well before moving fast.

The initial step is to start moving well. We’ve discovered that an outside-in
perspective of your software development organization and testing activities is the
most effective way to lay a solid foundation. By considering the organization’s unique
needs, allocated budget, and required maturity level, it’s possible to devise a custom
approach based on best practices for any organization.

A BrightScan is a highly effective evaluation carried out by a team of experts,
aiming to provide an objective analysis of an organization’s current software quality
structure and to identify future enhancement initiatives. This enables organizations
to elevate their testing maturity, accelerate their time-to-market, while minimizing
their quality costs.

BrightScan

13.

By addressing needs rather than problems, we’re able to
offer organizations valuable advice on enhancing

their operational processes.

Being an independent specialist, Brightest is not restricted to any specific vendors
or methodologies. This allows us to concentrate on what’s best for your organization,
seeking durable and cost-effective solutions that are tailored to your specific needs.
By addressing needs rather than problems, we’re able to offer organizations valuable
advice on enhancing their operational processes.

1. Efficient process
Over a period of 2 to 4 weeks, we carry out online surveys and engage in discussions
with stakeholders to gain a comprehensive understanding of the strengths
and weaknesses of the existing (test) organization. Depending on the specific
requirements, our focus extends beyond testing to encompass the entire process
and delve into more technical aspects.

14.

1.1 100% or partially remote

Our specialists have meticulously refined the process mentioned above over the
years, ensuring that every step in the BrightScan procedure can be carried out
remotely. In addition, our specialists have extensive experience working in remote
settings. Many organizations today collaborate with offshore or nearshore software
development teams. The combination of our robust process and skilled specialists
means we can guide any organization through a valuable assessment, regardless of
geographical boundaries or time zone differences.

1.2 100% tailored

Each organization faces unique challenges. Our approach incorporates a holistic
perspective, focusing on various aspects tailored to benefit your organization. For
instance, if an organization seeks a more technically driven assessment, we can
readily modify our process to meet the organization’s specific needs.

We are knowledgeable about various types of organizations and can customize our
results to suit their unique needs:

 Startup:
 Might need focus on scalability and speed of delivery, and a scalable testing
 strategy that can grow with the company.

 Large enterprise:
 Might need focus on improving collaboration and efficiency across multiple
 teams or departments.

 Software company:
 Might need focus on improving code quality and reducing bugs.

 Healthcare company:
 Might need focus on ensuring regulatory compliance and patient data security,
 whilst wanting to improve efficiency and cost of testing.

By tailoring the approach to the specific needs and context of each organization, we
can provide solutions that bring the most benefit to that organization.

2. Result driven
Following a thorough evaluation, we generate a strategic roadmap that highlights
immediate gains (quick wins) and outlines objectives for both the short and long
term. Our goal is to tie each objective to a quantifiable value for the organization,
giving insight into the Return On Investment (ROI) for each enhancement.

2.1 3-step maturity model

We use a 3-tier maturity model to determine the current state of your testing
organization and outline the next steps in the roadmap. In general, advancing to a
higher level isn’t feasible without mastering the preceding one.

Achieving proficiency at the basic level enables any organization to guarantee a
minimum standard of software delivery quality. This might be sufficient, either for the
time being or even for an extended period. Everything hinges on your organization’s
current circumstances, aspirations, and capacities.

However, it’s entirely possible to excel in one aspect while giving less attention to
other aspects. But this could also potentially signal that your organization’s focus
might need efficiency improvements.

15.

Every organization should aspire to reach the third level of maturity, in its own
time. Our experience shows us that progressing to the next maturity level involves
organizational change, which doesn’t occur overnight. The larger the organization,
the more time and resources are required to ascend to the next level.

The following table presents realistic timelines for organizations or teams ranging
from small to large:

16.

The timelines mentioned above are influenced by various factors, such as

 The number of distributed teams

 Expertise level

 Individual experiences

 Budget

 The willingness and support from the C-Level executives

A significant factor in successfully implementing this type of organizational change is
integrating software quality into the organization’s strategy.

2.2 Improvement areas

The identified areas for improvement are associated with 4 key enhancement areas.
Crucial questions are addressed for each during the analysis phase.

17.

Software delivery organizations can either
self-implement the proposed roadmap or enlist
expert support for parts of their transformation.

A key advantage of the BrightScan methodology is its ability to translate findings into
manageable, actionable improvement steps. These steps are connected to the 3- tier
maturity model, ensuring appropriate prioritization.
This is why software delivery organizations can either self-implement the proposed
roadmap or enlist expert support for parts of their transformation journey. It’s
important to note that some improvements will need to be addressed by the
organization directly.
We advise designating a responsible individual within your organization before

 Organization:
 How can the existing organization structure be enhanced to suport a more
 efficient strategy?

 People:
 What improvements can be made to the current human resources to align them
 with the future work methodology?

 Methodology:
 What methods can be optimized or implemented to facilitate efficient software
 delivery?

 Tools:
 What are the optimal tools to improve efficiency and software quality in the
 forthcoming roadmap?

2.3 Implementing assessment results

initiating a BrightScan. This person will be in charge of implementing the roadmap
after the results are shared, with the option of guidance from hired experts, if
necessary.

18.

3. Top 3 advantages
3.1 Powerful side effect

The BrightScan process has demonstrated its effectiveness in fostering employee
engagement within software delivery organizations. It appears to heighten
everyone’s focus and appreciation for software quality, particularly those involved
in any part of the software delivery process. The proposed improvements and long-
term roadmap are perceived as solutions to their personal challenges, not just those
of the test team, the organization, or management. This sense of ownership and
relevance enhances their commitment to the process.

3.2 Broader than software testing

Even though our surveys and interviews are primarily centred on software quality
delivery and testing, they often provide deep insights into the broader aspects
of the organization. By offering an impartial and independent platform, we
enable individuals to express their challenges and concerns about their roles or
situations. This often reveals a great deal about the organization’s processes and
methodologies, or the absence thereof.

Thus, a BrightScan usually generates additional valuable insights for the
organization, alongside recommendations on software testing-related activities and
strategies.

3.3 Success guaranteed

Thanks to the built-in success factors of the process, the resulting quick wins and
long-term objectives will be specific and backed by all key players in the software
delivery process. Even if the organization doesn’t manage to implement all
suggested improvements, they will at least have accomplished the most critical steps
towards enhancing their working methods and communication.

19.

More information

20.

A BrightScan can be conducted for a wide range of organizations, from startups
to multinational corporations. The pricing for a BrightScan varies based on the
organization’s complexity, and the number of people needed in the workshops.

Read all about how we can help you on our website.

For more information, don’t hesitate to reach out to us via info@brightest.be.

https://brightest.be/solutions/brightscan/
mailto:info@brightest.be

